61 resultados para Luus-Jaakola optimization method

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ordered weighted averaging (OWA) determination method with stress function was proposed by Yager, and it makes the OWA operator elements scatter in the shape of the stress function. In this paper, we extend the OWA determination with the stress function method using an optimization model. The proposed method transforms the OWA optimal solution elements into the interpolation points of the stress function. The proposed method extends the basic form of the stress function method with both scale and vertical shift transformations.We also explore a number of properties of this optimization-based stress function method. The OWA operator optimal solution elements can distribute as the shape of the given stress function in a parameterized way, in which case, the solution always possesses the arithmetic average operator as a special case.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The molecular geometry, the three dimensional arrangement of atoms in space, is a major factor determining the properties and reactivity of molecules, biomolecules and macromolecules. Computation of stable molecular conformations can be done by locating minima on the potential energy surface (PES). This is a very challenging global optimization problem because of extremely large numbers of shallow local minima and complicated landscape of PES. This paper illustrates the mathematical and computational challenges on one important instance of the problem, computation of molecular geometry of oligopeptides, and proposes the use of the Extended Cutting Angle Method (ECAM) to solve this problem.

ECAM is a deterministic global optimization technique, which computes tight lower bounds on the values of the objective function and fathoms those part of the domain where the global minimum cannot reside. As with any domain partitioning scheme, its challenge is an extremely large partition of the domain required for accurate lower bounds. We address this challenge by providing an efficient combinatorial algorithm for calculating the lower bounds, and by combining ECAM with a local optimization method, while preserving the deterministic character of ECAM.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examine numerical performance of various methods of calculation of the Conditional Value-at-risk (CVaR), and portfolio optimization with respect to this risk measure. We concentrate on the method proposed by Rockafellar and Uryasev in (Rockafellar, R.T. and Uryasev, S., 2000, Optimization of conditional value-at-risk. Journal of Risk, 2, 21-41), which converts this problem to that of convex optimization. We compare the use of linear programming techniques against a non-smooth optimization method of the discrete gradient, and establish the supremacy of the latter. We show that non-smooth optimization can be used efficiently for large portfolio optimization, and also examine parallel execution of this method on computer clusters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An important problem in designing RFIC in CMOS technology is the parasitic elements of passive and active devices that complicate design calculations. This article presents three LNA topologies including cascode, folded cascade, and differential cascode and then introduces image rejection filters for low-side and high-side injection. Then, a new method for design and optimization of the circuits based on a Pareto-based multiobjective genetic algorithm is proposed. A set of optimum device values and dimensions that best match design specifications are obtained. The optimization method is layout aware, parasitic aware, and simulation based. Circuit simulations are carried out based on TSMC 0.18 um CMOS technology by using Hspice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper aims at developing a new criterion for quantitative assessment of prediction intervals. The proposed criterion is developed based on both key measures related to quality of prediction intervals: length and coverage probability. This criterion is applied as a cost function for optimizing prediction intervals constructed using delta technique for neural network model. Optimization seeks out to minimize length of prediction intervals without compromising their coverage probability. Simulated Annealing method is employed for readjusting neural network parameters for minimization of the new cost function. To further ameliorate search efficiency of the optimization method, parameters of the network trained using weight decay method are considered as the initial set in Simulated Annealing algorithm. Implementation of the proposed method for a real world case study shows length and coverage probability of constructed prediction intervals are better than those constructed using traditional techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A neurogenetic-based hybrid framework is developed where the main components within the framework are artificial neural networks (ANNs) and genetic algorithms (GAs). The investigation covers a mode of combination or hybridisation between the two components that is called task hybridisation. The combination between ANNs and GAs using task hybridisation leads to the development of a hybrid multilayer feedforward network, trained using supervised learning. This paper discusses the GA method used to optimize the process parameters, using the ANN developed as the process mode, in a solder paste printing process, which is part of the process in the surface mount technology (SMT) method. The results obtained showed that the GA-based optimization method works well under various optimization criteria

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the problem of maintaining the (global) monotonicity and local monotonicity properties between the input(s) and the output of an FIS model is addressed. This is known as the monotone fuzzy modeling problem. In our previous work, this problem has been tackled by developing some mathematical conditions for an FIS model to observe the monotonicity property. These mathematical conditions are used as a set of governing equations for undertaking FIS modeling problems, and have been extended to some advanced FIS modeling techniques. Here, we examine an alternative to the monotone fuzzy modeling problem by introducing a monotonicity index. The monotonicity index is employed as an approximate indicator to measure the fulfillment of an FIS model to the monotonicity property. It allows the FIS model to be constructed using an optimization method, or be tuned to achieve a better performance, without knowing the exact mathematical conditions of the FIS model to satisfy the monotonicity property. Besides, the monotonicity index can be extended to FIS modeling that involves the local monotonicity problem. We also analyze the relationship between the FIS model and its monotonicity property fulfillment, as well as derived mathematical conditions, using the Monte Carlo method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a constrained optimization approach to improve the accuracy of a Time-of-Arrival (ToA) based multiple target localization system. Instead of using an overdetermined measurement system, this paper uses local distance measurements between the targets/emitters as the geometric constraint.Computer simulations are used to evaluate the performance of the geometrically constrained optimization method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A useful patient admission prediction model that helps the emergency department of a hospital admit patients efficiently is of great importance. It not only improves the care quality provided by the emergency department but also reduces waiting time of patients. This paper proposes an automatic prediction method for patient admission based on a fuzzy min–max neural network (FMM) with rules extraction. The FMM neural network forms a set of hyperboxes by learning through data samples, and the learned knowledge is used for prediction. In addition to providing predictions, decision rules are extracted from the FMM hyperboxes to provide an explanation for each prediction. In order to simplify the structure of FMM and the decision rules, an optimization method that simultaneously maximizes prediction accuracy and minimizes the number of FMM hyperboxes is proposed. Specifically, a genetic algorithm is formulated to find the optimal configuration of the decision rules. The experimental results using a large data set consisting of 450740 real patient records reveal that the proposed method achieves comparable or even better prediction accuracy than state-of-the-art classifiers with the additional ability to extract a set of explanatory rules to justify its predictions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Motion Cueing Algorithm (MCA) transforms longitudinal and rotational motions into simulator movement, aiming to regenerate high fidelity motion within the simulators physical limitations. Classical washout filters are widely used in commercial simulators because of their relative simplicity and reasonable performance. The main drawback of classical washout filters is the inappropriate empirical parameter tuning method that is based on trial-and-error, and is effected by programmers’ experience. This is the most important obstacle to exploiting the platform efficiently. Consequently, the conservative motion produces false cue motions. Lack of consideration for human perception error is another deficiency of classical washout filters and also there is difficulty in understanding the effect of classical washout filter parameters on generated motion cues. The aim of this study is to present an effortless optimization method for adjusting the classical MCA parameters, based on the Genetic Algorithm (GA) for a vehicle simulator in order to minimize human sensation error between the real and simulator driver while exploiting the platform within its physical limitations. The vestibular sensation error between the real and simulator driver as well as motion limitations have been taken into account during optimization. The proposed optimized MCA based on GA is implemented in MATLAB/Simulink. The results show the superiority of the proposed MCA as it improved the human sensation, maximized reference signal shape following and exploited the platform more efficiently within the motion constraints.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Feature based camera model identification plays an important role for forensics investigations on images. The conventional feature based identification schemes suffer from the problem of unknown models, that is, some images are captured by the camera models previously unknown to the identification system. To address this problem, we propose a new scheme: Source Camera Identification with Unknown models (SCIU). It has the capability of identifying images of the unknown models as well as distinguishing images of the known models. The new SCIU scheme consists of three stages: 1) unknown detection; 2) unknown expansion; and 3) (K+1)-class classification. Unknown detection applies a k-nearest neighbours method to recognize a few sample images of unknown models from the unlabeled images. Unknown expansion further extends the set of unknown sample images using a self-training strategy. Then, we address a specific (K+1)-class classification, in which the sample images of unknown (1-class) and known models (K-class) are combined to train a classifier. In addition, we develop a parameter optimization method for unknown detection, and investigate the stopping criterion for unknown expansion. The experiments carried out on the Dresden image collection confirm the effectiveness of the proposed SCIU scheme. When unknown models present, the identification accuracy of SCIU is significantly better than the four state-of-art methods: 1) multi-class Support Vector Machine (SVM); 2) binary SVM; 3) combined classification framework; and 4) decision boundary carving.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Finding the optimum distribution of material phases in a multi-material structure is a frequent and important problem in structural engineering which involves topology optimization. The Bi-directional Evolutionary Structural Optimization (BESO) method is now a well-known topology optimization method. In this paper an improved soft-kill BESO algorithm is introduced which can handle both single and multiple material distribution problems. A new filtering scheme and a gradual procedure inspired by the continuation approach are used in this algorithm. Capabilities of the proposed method are demonstrated using different examples. It is shown that the proposed method can result in considerable improvements compared to the normal BESO algorithm particularly when solving problems involving very soft material or void phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a simulated annealing (SA)-based global maximum power point tracking (GMPPT) technique designed for photovoltaic (PV) systems which experience partial shading conditions (PSC). The proposed technique is compared with the common perturb and observe MPPT technique and the particle swarm optimization method for GMPPT. The performance is assessed by considering the time taken to converge and the number of sample cases where the technique converges to the GMPP. Simulation results indicate the improved performance of the SA-based GMPPT algorithm, with arbitrarily selected parameters, in tracking to the global maxima in a multiple module PV system which experiences PSC. Experimental validation of the technique is presented based on PV modules that experience nonuniform environmental conditions. Additionally, studies regarding the influence of the key parameters of the SA-based algorithm are described. Simulation and experimental results verify the effectiveness of the proposed GMPPT method.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The cutting angle method for global optimization was proposed in 1999 by Andramonov et al. (Appl. Math. Lett. 12 (1999) 95). Computer implementation of the resulting algorithm indicates that running time could be improved with appropriate modifications to the underlying mathematical description. In this article, we describe the initial algorithm and introduce a new one which we prove is significantly faster at each stage. Results of numerical experiments performed on a Pentium III 750 Mhz processor are presented.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cutting angle method (CAM) is a deterministic global optimization technique applicable to Lipschitz functions f: Rn → R. The method builds a sequence of piecewise linear lower approximations to the objective function f. The sequence of solutions to these relaxed problems converges to the global minimum of f. This article adapts CAM to the case of linear constraints on the feasible domain. We show how the relaxed problems are modified, and how the numerical efficiency of solving these problems can be preserved. A number of numerical experiments confirms the improved numerical efficiency.